Two cells connected via a gap junction

In this example, we will set up two cells connected via a gap junction. The cells have different leak potentials. We will investigate how the equilibrium potentials of the two cells change because of the gap junction connection.


The equivalent circuit used to calculate the equilibrium potentials.


Concepts covered in this example:

  1. Creating a simulation recipe for two cells.

  2. Placing probes.

  3. Running the simulation and extracting the results.

  4. Adding a gap junction connection.


We set up a recipe for the simulation of two cells with some parameters.

class TwoCellsWithGapJunction(arbor.recipe):
    def __init__(
        self, probes, Vms, length, radius, cm, rL, g, gj_g, cv_policy_max_extent
        probes -- list of probes

        Vms -- membrane leak potentials of the two cells
        length -- length of cable in μm
        radius -- radius of cable in μm
        cm -- membrane capacitance in F/m^2
        rL -- axial resistivity in Ω·cm
        g -- membrane conductivity in S/cm^2
        gj_g -- gap junction conductivity in μS

        cv_policy_max_extent -- maximum extent of control volume in μm

        # The base C++ class constructor must be called first, to ensure that
        # all memory in the C++ class is initialized correctly.

        self.the_probes = probes

        self.Vms = Vms
        self.length = length
        self.radius = radius = cm
        self.rL = rL
        self.g = g
        self.gj_g = gj_g

        self.cv_policy_max_extent = cv_policy_max_extent

        self.the_props = arbor.neuron_cable_properties()

    def num_cells(self):
        return 2

    def num_sources(self, gid):
        assert gid in [0, 1]
        return 0

    def cell_kind(self, gid):
        assert gid in [0, 1]
        return arbor.cell_kind.cable

    def probes(self, gid):
        assert gid in [0, 1]
        return self.the_probes

    def global_properties(self, kind):
        return self.the_props

Implementing the cell_description member function constructs the morphology and sets the properties of the cells as well as the gap junction mechanisms and the discretization policy.

    def cell_description(self, gid):
        """A high level description of the cell with global identifier gid.

        For example the morphology, synapses and ion channels required
        to build a multi-compartment neuron.
        assert gid in [0, 1]

        tree = arbor.segment_tree()

            arbor.mpoint(0, 0, 0, self.radius),
            arbor.mpoint(self.length, 0, 0, self.radius),

        labels = arbor.label_dict({"cell": "(tag 1)", "gj_site": "(location 0 0.5)"})

        decor = (
            # add a gap junction mechanism at the "gj_site" location and label that specific mechanism on that location "gj_label"
            .place('"gj_site"', arbor.junction("gj", g=self.gj_g), "gj_label")
            .paint('"cell"', arbor.density(f"pas/e={self.Vms[gid]}", g=self.g))

        if self.cv_policy_max_extent is not None:
            policy = arbor.cv_policy_max_extent(self.cv_policy_max_extent)

        return arbor.cable_cell(tree, decor, labels)

The bidirection gap junction is created in the function gap_junctions_on.

    def gap_junctions_on(self, gid):
        # create a bidirectional gap junction from cell 0 at label "gj_label" to cell 1 at label "gj_label" and back.

        if gid == 0:
            tgt = 1
        elif gid == 1:
            tgt = 0
            raise RuntimeError("Invalid GID for example.")
        return [arbor.gap_junction_connection((tgt, "gj_label"), "gj_label", 1)]

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Two cells connected via a gap junction"

We parse the command line arguments, instantiate the recipe, run the simulation, extract results and plot:

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Two cells connected via a gap junction"

        help="membrane leak potentials in mV",
        default=[-100, -60],
    parser.add_argument("--length", help="cell length in μm", type=float, default=100)
    parser.add_argument("--radius", help="cell radius in μm", type=float, default=3)
        "--cm", help="membrane capacitance in F/m^2", type=float, default=0.005
        "--rL", help="axial resistivity in Ω·cm", type=float, default=90
        "--g", help="membrane conductivity in S/cm^2", type=float, default=0.001

        "--gj_g", help="gap junction conductivity in μS", type=float, default=0.01

        help="maximum extent of control volume in μm",

    # parse the command line arguments
    args = parser.parse_args()

    # set up membrane voltage probes at the position of the gap junction
    probes = [arbor.cable_probe_membrane_voltage('"gj_site"', "Um")]
    recipe = TwoCellsWithGapJunction(probes, **vars(args))

    # configure the simulation and handles for the probes
    sim = arbor.simulation(recipe)

    dt = 0.01
    handles = [
        sim.sample((gid, "Um"), arbor.regular_schedule(dt))
        for gid in range(recipe.num_cells())

    # run the simulation for 5 ms, dt=dt)

    # retrieve the sampled membrane voltages and convert to a pandas DataFrame
    print("Plotting results ...")
    df_list = []
    for probe in range(len(handles)):
        samples, meta = sim.samples(handles[probe])[0]
                {"t/ms": samples[:, 0], "U/mV": samples[:, 1], "Cell": f"{probe}"}

    df = pandas.concat(df_list, ignore_index=True)

    fig, ax = plt.subplots()

    # plot the membrane potentials of the two cells as function of time
    seaborn.lineplot(ax=ax, data=df, x="t/ms", y="U/mV", hue="Cell", errorbar=None)

    # area of cells
    area = args.length * 1e-6 * 2 * np.pi * args.radius * 1e-6

    # total conductance and resistance
    cell_g = args.g / 1e-4 * area
    cell_R = 1 / cell_g

    # gap junction conductance and resistance in base units
    si_gj_g = args.gj_g * 1e-6
    si_gj_R = 1 / si_gj_g

    # indicate the expected equilibrium potentials
    for i, j in [[0, 1], [1, 0]]:
        weighted_potential = args.Vms[i] + (
            (args.Vms[j] - args.Vms[i]) * (si_gj_R + cell_R)
        ) / (2 * cell_R + si_gj_R)
        ax.axhline(weighted_potential, linestyle="dashed", color="black", alpha=0.5)

    # plot the initial/nominal resting potentials
    for gid, Vm in enumerate(args.Vms):
        ax.axhline(Vm, linestyle="dashed", color="black", alpha=0.5)


The output plot below shows how the potential of the two cells approaches their equilibrium potentials. The expected values are denoted by dashed lines.


The full code

You can find the full code of the example at python/examples/

Executing the script will run the simulation with default parameters.